Simultaneous magnetic and charge doping of topological insulators with carbon.

نویسندگان

  • Lei Shen
  • Minggang Zeng
  • Yunhao Lu
  • Ming Yang
  • Yuan Ping Feng
چکیده

A two-step doping process, magnetic followed by charge or vice versa, is required to produce massive topological surface states (TSS) in topological insulators for many physics and device applications. Here, we demonstrate simultaneous magnetic and hole doping achieved with a single dopant, carbon, in Bi2Se3 by first-principles calculations. Carbon substitution for Se (C(Se)) results in an opening of a sizable surface Dirac gap (up to 82 meV), while the Fermi level remains inside the bulk gap and close to the Dirac point at moderate doping concentrations. The strong localization of 2p states of C(Se) favors spontaneous spin polarization via a p-p interaction and formation of ordered magnetic moments mediated by surface states. Meanwhile, holes are introduced into the system by C(Se). This dual function of carbon doping suggests a simple way to realize insulating massive TSS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massive Dirac fermion on the surface of a magnetically doped topological insulator.

In addition to a bulk energy gap, topological insulators accommodate a conducting, linearly dispersed Dirac surface state. This state is predicted to become massive if time reversal symmetry is broken, and to become insulating if the Fermi energy is positioned inside both the surface and bulk gaps. We introduced magnetic dopants into the three-dimensional topological insulator dibismuth trisele...

متن کامل

High-mobility 3D topological insulator nanoplatelets on hBN sheets

Topological insulators (TIs) have attracted immense attention during the past few years due to the fact that they are insulators in the bulk, but manifest conducting helical states at their boundaries [1]. In contrast to the quantum Hall state, these boundary states originate from strong spin-orbit coupling without any external magnetic field, such that time reversal symmetry is conserved and a...

متن کامل

Electrically Tunable Magnetism in Magnetic Topological Insulators.

The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hen...

متن کامل

Magnetic doping and kondo effect in bi(2)se(3) nanoribbons.

A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surface-to-volume ...

متن کامل

Andreev reflection in two-dimensional topological insulators with either conserved or broken time-reversal symmetry

We investigate Andreev reflection in two-dimensional heterojunctions formed by a superconductor in contact with a topological insulator ribbon either possessing or breaking time-reversal symmetry. Both classes of topological insulators exhibit perfect Andreev reflection, which is robust against disorder. This is assigned to topologically protected edge states. In the time-reversal symmetric cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 111 23  شماره 

صفحات  -

تاریخ انتشار 2013